About Us

Scientific Studies Of Bokashi Inoculants Composts, Microbial Liquid Inoculants

  1. Policastro, G., & Cesaro, A. (2022). Composting of Organic Solid Waste of Municipal Origin: The Role of Research in Enhancing Its Sustainability. International journal of environmental research and public health, 20(1), 312. https://doi.org/10.3390/ijerph20010312
  2. Awasthi, S. K., Sarsaiya, S., Awasthi, M. K., Liu, T., Zhao, J., Kumar, S., & Zhang, Z. (2020). Changes in global trends in food waste composting: Research challenges and opportunities. Bioresource technology, 299, 122555. https://doi.org/10.1016/j.biortech.2019.122555
  3. Lew, P. S., Nik Ibrahim, N. N. L., Kamarudin, S., Thamrin, N. M., & Misnan, M. F. (2021). Optimization of Bokashi-Composting Process Using Effective Microorganisms-1 in Smart Composting Bin. Sensors (Basel, Switzerland), 21(8), 2847. https://doi.org/10.3390/s21082847
  4. Tong, R. C., Whitehead, C. S., & Fawole, O. A. (2021). Effects of Conventional and Bokashi Hydroponics on Vegetative Growth, Yield and Quality Attributes of Bell Peppers. Plants (Basel, Switzerland), 10(7), 1281. https://doi.org/10.3390/plants10071281
  5. Ombita, S. N., Mwendwa, S. M., & Mureithi, S. M. (2024). Influence of organic fertilization on growth and yield of strawberry (Fragaria × ananassa) in Kabete and Mbooni areas, Kenya. Heliyon, 10(3). https://doi.org/10.1016/j.heliyon.2024.e25324
  6. Lew, P. S., Nik Ibrahim, N. N. L., Kamarudin, S., Thamrin, N. M., & Misnan, M. F. (2021). Optimization of Bokashi-Composting Process Using Effective Microorganisms-1 in Smart Composting Bin. Sensors (Basel, Switzerland), 21(8), 2847. https://doi.org/10.3390/s21082847
  7. Ngoc, U. N., & Schnitzer, H. (2009). Sustainable solutions for solid waste management in Southeast Asian countries. Waste management (New York, N.Y.), 29(6), 1982–1995. https://doi.org/10.1016/j.wasman.2008.08.031
  8. Onwosi, C. O., Igbokwe, V. C., Odimba, J. N., Eke, I. E., Nwankwoala, M. O., Iroh, I. N., & Ezeogu, L. I. (2017). Composting technology in waste stabilization: On the methods, challenges and future prospects. Journal of environmental management, 190, 140–157. https://doi.org/10.1016/j.jenvman.2016.12.051
  9. Noor, R. S., Shah, A. N., Tahir, M. B., Umair, M., Nawaz, M., Ali, A., Ercisli, S., Abdelsalam, N. R., Ali, H. M., Yang, S. H., Ullah, S., & Assiri, M. A. (2024). Recent Trends and Advances in Additive-Mediated Composting Technology for Agricultural Waste Resources: A Comprehensive Review. ACS omega, 9(8), 8632–8653. https://doi.org/10.1021/acsomega.3c06516
  10. Tong, R. C., Whitehead, C. S., & Fawole, O. A. (2021). Effects of Conventional and Bokashi Hydroponics on Vegetative Growth, Yield and Quality Attributes of Bell Peppers. Plants (Basel, Switzerland), 10(7), 1281. https://doi.org/10.3390/plants10071281
  11. Kashyap, A. S., Manzar, N., Meshram, S., & Sharma, P. K. (2023). Screening microbial inoculants and their interventions for cross-kingdom management of wilt disease of solanaceous crops- a step toward sustainable agriculture. Frontiers in microbiology, 14, 1174532. https://doi.org/10.3389/fmicb.2023.1174532
  12. Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological research, 163(2), 173–181. https://doi.org/10.1016/j.micres.2006.04.001
  13. Bechtaoui, N., Raklami, A., Benidire, L., Tahiri, A. I., Göttfert, M., & Oufdou, K. (2020). Effects of PGPR co-inoculation on growth, phosphorus nutrition and phosphatase/phytase activities of faba bean under different phosphorus availability conditions. Pol. J. Environ. Stud, 29(2), 1557-1565.
  14. Maki, Y., Soejima, H., Kitamura, T., Sugiyama, T., Sato, T., Watahiki, M. K., & Yamaguchi, J. (2021). 3-Phenyllactic acid, a root-promoting substance isolated from Bokashi fertilizer, exhibits synergistic effects with tryptophan. Plant biotechnology (Tokyo, Japan), 38(1), 9–16. https://doi.org/10.5511/plantbiotechnology.20.0727a
  15. Nikitin, A. N., Cheshyk, I. A., Gutseva, G. Z., Tankevich, E. A., Shintani, M., & Okumoto, S. (2018). Impact of effective microorganisms on the transfer of radioactive cesium into lettuce and barley biomass. Journal of environmental radioactivity, 192, 491–497. https://doi.org/10.1016/j.jenvrad.2018.08.005
  16. Kiruba N, J. M., & Saeid, A. (2022). An Insight into Microbial Inoculants for Bioconversion of Waste Biomass into Sustainable “Bio-Organic” Fertilizers: A Bibliometric Analysis and Systematic Literature Review. International journal of molecular sciences, 23(21), 13049. https://doi.org/10.3390/ijms232113049
  17. Chilakamarry, C. R., Mimi Sakinah, A. M., Zularisam, A. W., Sirohi, R., Khilji, I. A., Ahmad, N., & Pandey, A. (2022). Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. Bioresource technology, 343, 126065. https://doi.org/10.1016/j.biortech.2021.126065
  18. Jayakumar, A., Nair, I. C., & Radhakrishnan, E. K. (2021). Environmental Adaptations of an Extremely Plant Beneficial Bacillus subtilis Dcl1 Identified Through the Genomic and Metabolomic Analysis. Microbial ecology, 81(3), 687–702. https://doi.org/10.1007/s00248-020-01605-7
  19. Choudhury, D., Tarafdar, S., & Dutta, S. (2022). Plant growth promoting rhizobacteria (PGPR) and their eco-friendly strategies for plant growth regulation: A review. Plant Science Today, 9(3), 524-537.
  20. Ombita, S. N., Mwendwa, S. M., & Mureithi, S. M. (2024). Influence of organic fertilization on growth and yield of strawberry (Fragaria × ananassa) in Kabete and Mbooni areas, Kenya. Heliyon, 10(3), e25324. https://doi.org/10.1016/j.heliyon.2024.e25324
  21. Pohan, S. D., Amrizal, E. M., Puspitasari, W. D., Malau, N., Pasaribu, R., & Siregar, R. (2019, October). The use of bokashi compost as a soil fertility amendment in increasing vegetative growth of organic tomato (Lycopersicum esculentum Mill.). In AISTSSE 2018: Proceedings of The 5th Annual International Seminar on Trends in Science and Science Education, AISTSSE 2018, 18-19 October 2018, Medan, Indonesia (p. 168). European Alliance for Innovation.
  22. Walker, D. J., & Bernal, M. P. (2008). The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresource technology, 99(2), 396–403. https://doi.org/10.1016/j.biortech.2006.12.006
  23. Sun, X., Huang, G., Huang, Y., Fang, C., He, X., & Zheng, Y. (2022). Large Semi-Membrane Covered Composting System Improves the Spatial Homogeneity and Efficiency of Fermentation. International journal of environmental research and public health, 19(23), 15503. https://doi.org/10.3390/ijerph192315503
  24. Kashyap, A. S., Manzar, N., Meshram, S., & Sharma, P. K. (2023). Screening microbial inoculants and their interventions for cross-kingdom management of wilt disease of solanaceous crops- a step toward sustainable agriculture. Frontiers in microbiology, 14, 1174532. https://doi.org/10.3389/fmicb.2023.1174532
  25. Tong, R. C., Whitehead, C. S., & Fawole, O. A. (2021). Effects of Conventional and Bokashi Hydroponics on Vegetative Growth, Yield and Quality Attributes of Bell Peppers. Plants (Basel, Switzerland), 10(7), 1281. https://doi.org/10.3390/plants10071281
  26. Li, D., Yuan, J., Ding, J., Wang, H., Shen, Y., & Li, G. (2022). Effects of carbon/nitrogen ratio and aeration rate on the sheep manure composting process and associated gaseous emissions. Journal of environmental management, 323, 116093. https://doi.org/10.1016/j.jenvman.2022.116093
  27. Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. International Journal of Environmental Research and Public Health, 15(10). https://doi.org/10.3390/ijerph15102224
  28. Zdor R. E. (2016). Brewing Bokashi: Strengthening Student Skills in Dilution Theory through Fermentation Analysis. Journal of microbiology & biology education, 17(2), 294–296. https://doi.org/10.1128/jmbe.v17i2.1080
  29. Iriti, M., Scarafoni, A., Pierce, S., Castorina, G., & Vitalini, S. (2019). Soil Application of Effective Microorganisms (EM) Maintains Leaf Photosynthetic Efficiency, Increases Seed Yield and Quality Traits of Bean (Phaseolus vulgaris L.) Plants Grown on Different Substrates. International journal of molecular sciences, 20(9), 2327. https://doi.org/10.3390/ijms20092327
  30. Bradáčová, K., Florea, A. S., Bar-Tal, A., Minz, D., Yermiyahu, U., Shawahna, R., … & Poşta, G. (2019). Microbial consortia versus single-strain inoculants: an advantage in PGPM-assisted tomato production?. Agronomy, 9(2), 105.
  31. Rezende, Adriana Magali FA, Celso K. Tomita, and Carlos H. Uesugi. “Cupric fungicides, benzalconium chlorides and liquid bioactive compost (Bokashi): phytotoxicity and control of guava bacterial blight caused by Erwinia psidii.Tropical Plant Pathology 33 (2008): 288-294.
  32. Javaid, Arshad, and Rukhsana Bajwa. “Field evaluation of effective microorganisms (EM) application for growth, nodulation, and nutrition of mung bean.” Turkish Journal of Agriculture and Forestry 35.4 (2011): 443-452.
  33. Kashyap, A. S., Manzar, N., Meshram, S., & Sharma, P. K. (2023). Screening microbial inoculants and their interventions for cross-kingdom management of wilt disease of solanaceous crops- a step toward sustainable agriculture. Frontiers in microbiology, 14, 1174532. https://doi.org/10.3389/fmicb.2023.1174532
  34. Phooi, C.L., E.A. Azman and R. Ismail. 2022. Role of organic manure Bokashi improving plant growth and nutrition: A review. Sarhad Journal of Agriculture, 38(4): 1478-1484.
  35. Vassileva, M., Flor-Peregrin, E., Malusá, E., & Vassilev, N. (2020). Towards Better Understanding of the Interactions and Efficient Application of Plant Beneficial Prebiotics, Probiotics, Postbiotics and Synbiotics. Frontiers in plant science, 11, 1068. https://doi.org/10.3389/fpls.2020.01068
  36. Bautista-Cruz, A., Domínguez, G., Nieves Rodríguez Mendoza, M. Pérez Pacheco, R., Robles, C. 2014. Effect of compost and slow-release fertilizers addition on soil biochemistry and yield of maize (Zea mays L.) in Oaxaca, Mexico. Revista de la Facultad de Ciencias Agrarias 46, 181-193
  37. Xu, H.-L., Wang, R., Mridha, M.A.U., 2001. Effects of organic fertilizers and a microbial inoculant on leaf photosynthesis and fruit yield and quality of tomato plants. Journal of Crop Production 3, 173–182.
  38. Vokashi. 2016. How it works. Accessed from https://vokashi.com/about-vokashi/
  39. Tognetti, C., Mazzarino, M., & Laos, F. 2007. Improving the quality of municipal organic waste compost. Bioresource Technology, 98(5):1067-1076.
  40. Imran, A., Sardar, F., Khaliq, Z., Nawaz, M. S., Shehzad, A., Ahmad, M., Yasmin, S., Hakim, S., Mirza, B. S., Mubeen, F., & Mirza, M. S. (2022). Tailored Bioactive Compost from Agri-Waste Improves the Growth and Yield of Chili Pepper and Tomato. Frontiers in bioengineering and biotechnology, 9, 787764. https://doi.org/10.3389/fbioe.2021.787764
  41. Somasegaran P. (1985). Inoculant Production with Diluted Liquid Cultures of Rhizobium spp. and Autoclaved Peat: Evaluation of Diluents, Rhizobium spp., Peats, Sterility Requirements, Storage, and Plant Effectiveness. Applied and environmental microbiology, 50(2), 398–405. https://doi.org/10.1128/aem.50.2.398-405.1985
  42. Ben Rebah, F., Prévost, D., Yezza, A., & Tyagi, R. D. (2007). Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review. Bioresource technology, 98(18), 3535–3546. https://doi.org/10.1016/j.biortech.2006.11.066
  43. Alori, E. T., & Babalola, O. O. (2018). Microbial Inoculants for Improving Crop Quality and Human Health in Africa. Frontiers in microbiology, 9, 2213. https://doi.org/10.3389/fmicb.2018.02213
  44. Khan, M. S., Zaidi, A., & Wani, P. A. (2009). Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. Sustainable agriculture, 551-570.
  45. Baslam, M., Garmendia, I., & Goicoechea, N. (2011). Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. Journal of agricultural and food chemistry, 59(10), 5504–5515. https://doi.org/10.1021/jf200501c
  46. Vassilev, N., Vassileva, M., Martos, V., Garcia Del Moral, L. F., Kowalska, J., Tylkowski, B., & Malusá, E. (2020). Formulation of Microbial Inoculants by Encapsulation in Natural Polysaccharides: Focus on Beneficial Properties of Carrier Additives and Derivatives. Frontiers in plant science, 11, 270. https://doi.org/10.3389/fpls.2020.00270
  47. Vassilev, N., Eichler-Löbermann, B., Flor-Peregrin, E., Martos, V., Reyes, A., & Vassileva, M. (2017). Production of a potential liquid plant bio-stimulant by immobilized Piriformospora indica in repeated-batch fermentation process. AMB Express, 7(1), 106. https://doi.org/10.1186/s13568-017-0408-z
  48. Elsakhawy, T., Ghazi, A., & Abdel-Rahman, M. A. (2021). Developing Liquid Rhizobium Inoculants with Enhanced Long-Term Survival, Storage Stability, and Plant Growth Promotion Using Ectoine Additive. Current microbiology, 78(1), 282–291. https://doi.org/10.1007/s00284-020-02265-z
  49. Bittencourt, P. P., Alves, A. F., Ferreira, M. B., da Silva Irineu, L. E. S., Pinto, V. B., & Olivares, F. L. (2023). Mechanisms and Applications of Bacterial Inoculants in Plant Drought Stress Tolerance. Microorganisms, 11(2), 502. https://doi.org/10.3390/microorganisms11020502
  50. O’Callaghan M. (2016). Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied microbiology and biotechnology, 100(13), 5729–5746. https://doi.org/10.1007/s00253-016-7590-9
  51. Chaudhary, T., Dixit, M., Gera, R., Shukla, A. K., Prakash, A., Gupta, G., & Shukla, P. (2020). Techniques for improving formulations of bioinoculants. 3 Biotech, 10(5), 199. https://doi.org/10.1007/s13205-020-02182-9
  52. Santos, M. S., Nogueira, M. A., & Hungria, M. (2019). Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express, 9(1), 205. https://doi.org/10.1186/s13568-019-0932-0
  53. Latkovic, D., Maksimovic, J., Dinic, Z., Pivic, R., Stanojkovic, A., & Stanojkovic-Sebic, A. (2020). Case Study upon Foliar Application of Biofertilizers Affecting Microbial Biomass and Enzyme Activity in Soil and Yield Related Properties of Maize and Wheat Grains. Biology, 9(12), 452. https://doi.org/10.3390/biology9120452
  54. Jalal, A., Oliveira, C. E. D. S., Fernandes, G. C., da Silva, E. C., da Costa, K. N., de Souza, J. S., Leite, G. D. S., Biagini, A. L. C., Galindo, F. S., & Teixeira Filho, M. C. M. (2023). Integrated use of plant growth-promoting bacteria and nano-zinc foliar spray is a sustainable approach for wheat biofortification, yield, and zinc use efficiency. Frontiers in plant science, 14, 1146808. https://doi.org/10.3389/fpls.2023.1146808
  55. Preininger, C., Sauer, U., Bejarano, A., & Berninger, T. (2018). Concepts and applications of foliar spray for microbial inoculants. Applied microbiology and biotechnology, 102(17), 7265–7282. https://doi.org/10.1007/s00253-018-9173-4
  56. Boscaro, R., Panozzo, A., Piotto, S., Moore, S. S., Barion, G., Wang, Y., & Vamerali, T. (2023). Effects of Foliar-Applied Mixed Mineral Fertilizers and Organic Biostimulants on the Growth and Hybrid Seed Production of a Male-Sterile Inbred Maize Line. Plants (Basel, Switzerland), 12(15), 2837. https://doi.org/10.3390/plants12152837
  57. Chai, Y. N., Futrell, S., & Schachtman, D. P. (2022). Assessment of Bacterial Inoculant Delivery Methods for Cereal Crops. Frontiers in microbiology, 13, 791110. https://doi.org/10.3389/fmicb.2022.791110
Locally grown organic products free from harmful pesticides hvo.earth

Quality Products

Potting Soil * Coco Coir & Chips * Vegetable Seeds Organic Top Soil * Organic Fertilizer & Much More

USDA certified organic icon for trust and quality hvo.earth

Organic Products

Everything needed to create your own source of wholesome foods and herbs

All fresh vegetables grocery by HVO.earth
Quality Image icon for online order by hvo.earth

Innovative Solutions

Bokashi Inoculants * Transplant Solutions * HOCl Catchment Cleaner * Soil Minerals * and Much More!

Organic Education - Cultivating Knowledge with a Biological Focus

Organic Education

Sign up to receive our Gardening Tips New products Discounts and notifications of our upcoming seminars & workshops

Why Choose Us

Locally grown organic products free from harmful pesticides hvo.earth

Quality Products

We provide premium organic seed sourced from the rich volcanic soil of Hawaii for optimal growth and health.

Scientific Studies Hawaiian Volcanic Organic

Fast Delivery

We offer speedy delivery options to ensure your seeds arrive promptly and ready for planting.

All fresh vegetables grocery by HVO.earth
Quality Image icon for online order by hvo.earth

Online Order

Our easy-to-use online platform makes it simple to browse and order your organic seed from anywhere.

Scientific Studies Hawaiian Volcanic Organic